Visitors and Talk

Dr Jayasri Dontabhaktuni

Associate Professor , Mahindra University École Centrale School of Engineering in the Department of Physics


Design of reconfigurable all-dielectric metasurfaces

June 6th, 2022, 11 PM -12 PM
Room A3-117, IIIT Hyderabad, Gachibowli

Metamaterials are artificial materials consisting of micro or nano composites which exhibit properties different from their components in sub-wavelength regime. These materials are finding applications in several areas such as sensing, sub-diffractive imaging, negative refractive index materials, perfect absorption, Huygen’s lens and quantum technologies. More recently all-dielectric metamaterials have been garnering much attention due to the reduction in the dissipative losses which their metallic counterparts suffer from. Our research involves understanding the light-matter interactions in all-dielectric materials using simulations and designing reconfigurable multi-functional dielectric devices for applications in sensing, energy harvesting and quantum technologies. In the talk, I will briefly discuss the overview of our research area and give details of some recent findings on tunable soft-metamaterials.

About Honourable Speaker
Dr. Jayasri Dontabhaktuni has obtained her Ph. D in Computational Physics from University of Hyderabad in 2009. She got selected for the prestigious Marie Curie fellowship to pursue her post-doctoral research at University of Ljubljana, Slovenia during 2009-2011. She was selected for DST young scientist award (2012) and Dr. D. S. Kothari postdoctoral fellowship (2013) to further pursue her research in University of Hyderabad. She is visiting researcher at Newton Institute of Mathematical Sciences, University of Cambridge (2019) and University of Ljubljana, Slovenia (2012, 2017 & 2018). She has published more than 20 research articles. Her research interests include statics and dynamics of self-organization of liquid crystal based colloids for photonics and biological applications; design of tunable all-dielectric metasurfaces for applications towards energy harvesting and sensing; data-driven inverse design methods of metasurfaces based on classical and quantum machine learning methods for applications towards energy harvesting and quantum technologies.
Himadri Shekhar Dhar

Assistant Professor, Department of Physics, IIT Bombay


Theoretical approaches to study quantum light-matter interaction – An overview

May 25th, 2022

From quantum computation to communication, design of quantum devices and peripheral technology relies strongly on the interaction of light with matter. This requires not only modelling these interactions at the microscopic level but also seeking appropriate solutions at different operational regime. In this talk, we informally look at a few approaches that can be used to study such light-matter interactions. These range from rate equations, cluster expansion and quantum trajectories to study condensates of light to tensor-network methods to design spin-ensemble based quantum memories.